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Introduction

The study of language and the sounds of speech can be traced back at least to
the Greek and Sanskrit grammarians of the third and fourth centuries BC. The
explicit study of speech science began in the eighteenth century when Ferrein
(1741) attempted to explain how the vocal cords produced phonation.
Ferrein’s studies were not an isolated event. Kratzenstein (1780) and von
Kempelen (1791) attempted to explain how the vowels and consonants of
human speech were produced by synthesizing sounds using artificial ““talking
machines.” There indeed may have been earlier attempts at constructing
talking machines; La Mettrie (1747) discusses some of these early attempts, but
we lack detailed records. By the mid nineteenth century Miiller (1848) had
formulated the sourcefilter theory of speech production, which is consistent
with the most recent data and still guides research on human speech as well as
the vocal communications of other animals. Although Miiller’s theory was
further developed later in the nineteenth century, particularly by Hermann
(1894), the modern period of speech science is really quite recent, dating back
to the late 1930s, where devices like the sound spectrograph, and techniques
like high-speed photography, cineradiography, and electromyography made
new data available. Quantitative studies like those of Chiba and Kajiyama
(1941), Joos (1948), Peterson and Barney (1952), Stevens and House (1955),
and Fant (1960) refined and tested the traditional phonetic theories of the
nineteenth century and provided the framework for comprehensive, biologi-
cally-oriented studies of speech production, speech perception, and phonetics.
The advent and general availability of digital computers made quantitative
modeling studies possible. New techniques for speech synthesis and
psychoacoustic experiments have made it possible to explore the fundamental
properties of human speech.

We are beginning to understand how human speech is produced, how it is
perceived, and how the physiological properties of the vocal tract and the
neural mechanisms of the brain contribute to speech processing. We also are
beginning to understand how human language and human speech evolved and
how other animals communicate. The development of speech and language in
infants and children is being explored, and new possibilities are opening for the
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Introduction

diagnosis and amelioration of various speech pathologies.

The focus of this introduction to speech physiology and acoustic phonetics
is thus to provide a background to the “new” speech science. An understand-
ing of the acoustics of speech, the physiology of speech production, and the
special factors that are involved in the perception of speech is a prerequisite for
further study of the pathologies of speech production or the neurological
impairment of either speech production or speech perception. It is also
necessary for the development of quantitative, predictive phonetic and
phonological studies. While linguists have studied the sound structure of
language, exploring the processes of sound change and the structure of sound
systems in language, it is the study of speech science which may provide the
explanations for why sounds change in the way they do and why the sound
systems of natural language are structured in the way that they are. This
introduction is no substitute for a traditional phonetics text, focused on
teaching people how to make transcriptions of various languages and dialects.
The training techniques that phoneticians use are not included in this book
because our objective is to understand the biological mechanisms that are the
basis not only of human speech, but also of vocal communication in many
other animals.

Readers who have a good background in high-school mathematics should
have little difficulty in following the discussions of the acoustics of speech
production or the sourcefilter theory of speech production. Readers who
have a more advanced background may be able to skim appropriate chapters.

Although readers may find this book a useful reference source, its primary
function is pedagogic. It should be viewed as an introduction to the physiology
of speech and acoustic phonetics. Many current problems are not discussed in
detail, and the advanced reader may be familiar with topics that have been
omitted. Everyone, however, should encounter new material and indeed
should note that speech science is still a frontier with many gaps in our
knowledge yet to be filled. It is becoming apparent that human speech is an
integral part of human linguistic ability. The biological bases of human speech
are complex and appear to follow from the Darwinian process of natural
selection acting over at least 250 000 years to yield specialized anatomical and
neural mechanisms in Homo sapiens (Lieberman, 1984). The gaps in our
knowledge concerning the biological bases of human speech thus reflect the
difficulties inherent in understanding the nature of language and human
cognition of which speech forms a crucial part.



